6  🔥 Fuel and Emission

OpenAP provides estimations of fuel consumption and emissions based on actual flight trajectory data. The models are based on the following work:

6.1 Accuracy of the fuel model

The accuracy of the fuel estimation is greatly improved in the new OpenAP (v2), which is comparable to the BADA 3 fuel model. This is due to the better tuning using data-driven model, acropole, shared by @JarryGabriel.

The acropole model only support a few aircraft types, while the OpenAP extends the model to a wide range of aircraft types based on a customized calibration model based on engine parameters.

The following figure shows the comparison between the fuel flow estimation from OpenAP and the QAR data. In the end of this page, you can find the code snippet to generate this comparison.

fuel estimation compared to QAR data


6.2 Basic usage of the fuel and emission modules

6.2.1 Compute aircraft fuel flow:

To estimate fuel flow, you need to provide the aircraft type (e.g., ‘A320’) through the openap.FuelFlow object. The fuel flow model is based on: - aircraft’s mass (in kg), - true airspeed (TAS, in kts), - altitude (in ft), - and vertical speed (optional, in ft/min).

from openap import FuelFlow

# create a fuel flow model for A320
fuelflow = FuelFlow(ac='A320')

# estimate fuel flow during cruise
FF = fuelflow.enroute(mass=60000, tas=230, alt=32000)

# estimate fuel flow at climb, with vertical speed (feet/min)
FF = fuelflow.enroute(mass=60000, tas=200, alt=20000, vs=1000)

# estimate fuel flow at with a given thrust (e.g., derived from drag model)
FF = fuelflow.at_thrust(acthr=50000, alt=30000)

# estimate fuel flow at takeoff
FF = fuelflow.takeoff(tas=100, alt=0, throttle=1)

6.2.2 Compute aircraft emissions:

The emission model is based on the fuel flow and aircraft’s true airspeed (TAS) and altitude. The input fuel flow is in kg/s The emissions include CO2, H2O, NOx, CO, and HC, with units in g/s.

from openap import FuelFlow, Emission

fuelflow = FuelFlow(ac="A320")
emission = Emission(ac="A320")

TAS = 350
ALT = 30000

FF = fuelflow.enroute(mass=60000, tas=TAS, alt=ALT, vs=0)  # kg/s

CO2 = emission.co2(FF)  # g/s
H2O = emission.h2o(FF)  # g/s
NOx = emission.nox(FF, tas=TAS, alt=ALT)  # g/s
CO = emission.co(FF, tas=TAS, alt=ALT)  # g/s
HC = emission.hc(FF, tas=TAS, alt=ALT)  # g/s

6.3 Estimate fuel and emission from flight data

In the following example, we estimate the fuel consumption for a given flight trajectory data obtained from the OpenSky Network. The sample data can be downloaded from https://github.com/junzis/openap/tree/master/examples.

The following code snippets show how to estimate fuel flow and emissions for this example flight trajectory data.

6.3.1 Data exploration

First, we need to import openap, pandas, and matplotlib libraries.

import pandas as pd
import openap
import matplotlib.pyplot as plt

We also need to define aircraft parameters and import data.

mass_takeoff_assumed = 66300  # kg

fuelflow = openap.FuelFlow("A319")

# Load the data
df = pd.read_csv(
    "data/flight_a319_opensky.csv",
    parse_dates=["timestamp"],
    dtype={"icao24": str},
)

# Calculate seconds between each timestamp
df = df.assign(d_ts=lambda d: d.timestamp.diff().dt.total_seconds().bfill())

Let’s see what are the features in this flight dataframe:

df
timestamp icao24 typecode callsign origin destination latitude longitude altitude groundspeed track vertical_rate d_ts
0 2018-01-02 19:53:00+00:00 3946e9 a319 AFR91HL LBG BMA 49.085861 2.349666 8200.0 255.0 327.804266 1920.0 60.0
1 2018-01-02 19:54:00+00:00 3946e9 a319 AFR91HL LBG BMA 49.153427 2.310861 9475.0 290.0 9.722018 960.0 60.0
2 2018-01-02 19:55:00+00:00 3946e9 a319 AFR91HL LBG BMA 49.233367 2.361121 9975.0 332.0 23.243919 640.0 60.0
3 2018-01-02 19:56:00+00:00 3946e9 a319 AFR91HL LBG BMA 49.319916 2.418471 11225.0 353.0 23.517962 2752.0 60.0
4 2018-01-02 19:57:00+00:00 3946e9 a319 AFR91HL LBG BMA 49.411652 2.478896 14175.0 368.0 23.566915 3584.0 60.0
... ... ... ... ... ... ... ... ... ... ... ... ... ...
111 2018-01-02 21:44:00+00:00 3946e9 a319 AFR91HL LBG BMA 58.978659 17.706646 13250.0 343.0 24.471621 -1408.0 60.0
112 2018-01-02 21:45:00+00:00 3946e9 a319 AFR91HL LBG BMA 59.062826 17.781088 11800.0 326.0 24.443955 -1344.0 60.0
113 2018-01-02 21:46:00+00:00 3946e9 a319 AFR91HL LBG BMA 59.142609 17.852051 10400.0 307.0 24.397686 -1216.0 60.0
114 2018-01-02 21:47:00+00:00 3946e9 a319 AFR91HL LBG BMA 59.217286 17.918701 9125.0 291.0 24.541618 -1216.0 60.0
115 2018-01-02 21:48:00+00:00 3946e9 a319 AFR91HL LBG BMA 59.289505 17.990112 8075.0 291.0 28.500577 -960.0 60.0

116 rows × 13 columns

Let’s plot the altitude profile of the flight. I will also make the plots more visually appealing.

from matplotlib import dates

import matplotlib

matplotlib.rc("font", size=11)
matplotlib.rc("font", family="Ubuntu")
matplotlib.rc("lines", linewidth=2, markersize=8)
matplotlib.rc("grid", color="darkgray", linestyle=":")


def format_ax(ax):
    ax.xaxis.set_major_formatter(dates.DateFormatter("%H:%M"))
    ax.spines["right"].set_visible(False)
    ax.spines["top"].set_visible(False)
    ax.yaxis.set_label_coords(-0.1, 1.03)
    ax.yaxis.label.set_rotation(0)
    ax.yaxis.label.set_ha("left")
    ax.grid()


fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(5, 5), sharex=True)

ax1.plot(df.timestamp, df.altitude)
ax2.plot(df.timestamp, df.groundspeed)
ax3.plot(df.timestamp, df.vertical_rate)

ax1.set_ylabel("altitude (ft)")
ax2.set_ylabel("groundspeed (kts)")
ax3.set_ylabel("vertical rate (ft/min)")

for ax in (ax1, ax2, ax3):
    format_ax(ax)

plt.tight_layout()
plt.show()

6.3.2 Fuel flow calculation

Next, we iterate over the timestamp to calculate fuel flow and mass during the flight.

mass_current = mass_takeoff_assumed

fuelflow_every_step = []
fuel_every_step = []

for i, row in df.iterrows():
    ff = fuelflow.enroute(
        mass=mass_current,
        tas=row.groundspeed,
        alt=row.altitude,
        vs=row.vertical_rate,
    )
    fuel = ff * row.d_ts
    fuelflow_every_step.append(ff)
    fuel_every_step.append(ff * row.d_ts)
    mass_current -= fuel

df = df.assign(fuel_flow=fuelflow_every_step, fuel=fuel_every_step)

Then, we can visualize the fuel flow during the flight.

plt.figure(figsize=(7, 2))
plt.plot(df.timestamp, df.fuel_flow, color="tab:red")
plt.ylabel("fuel flow (kg/s)")
format_ax(plt.gca())
plt.show()

With the new dataframe, we can calculate total fuel consumption by summing the fuel consumption at overall time steps:

total_fuel = df.fuel.sum().astype(int)
print(f"Total fuel: {total_fuel} kg")
Total fuel: 3841 kg

6.3.3 Emission calculation

The emission calculations are based on the fuel consumption using the openap.Emission class.

We can calculate the emissions for the entire flight and append them as new columns to the dataframe as follows:

emission = openap.Emission(ac="A319")

df = df.assign(
    co2_flow=lambda d: emission.co2(d.fuel_flow),
    h2o_flow=lambda d: emission.h2o(d.fuel_flow),
    soot_flow=lambda d: emission.soot(d.fuel_flow),
    sox_flow=lambda d: emission.sox(d.fuel_flow),
    nox_flow=lambda d: emission.nox(d.fuel_flow, tas=d.groundspeed, alt=d.altitude),
    co_flow=lambda d: emission.co(d.fuel_flow, tas=d.groundspeed, alt=d.altitude),
    hc_flow=lambda d: emission.hc(d.fuel_flow, tas=d.groundspeed, alt=d.altitude),
)

Let’s visualize the emission flows:

fig, axes = plt.subplots(7, 1, figsize=(5, 7), sharex=True)

axes = axes.flatten()

labels = dict(
    co2_flow="CO2 (g/s)",
    h2o_flow="H2O (g/s)",
    soot_flow="Soot (g/s)",
    sox_flow="SOx (g/s)",
    nox_flow="NOx (g/s)",
    co_flow="CO (g/s)",
    hc_flow="HC (g/s)",
)

for i, (k, v) in enumerate(labels.items()):
    axes[i].plot(df.timestamp, df[k], color="tab:brown")
    axes[i].set_ylabel(v)
    format_ax(axes[i])


plt.tight_layout()
plt.show()

Note that CO2, H2O, Soot, and SOx are linear correlated to the fuel flow, following the coefficients from the paper Global Mortality Attributable to Aircraft Cruise Emissions.

6.3.4 Final data

The emissions at each time step are also calculated as follows. Note that we divide values by 1000 to obtain the emissions in kg.

df = df.eval(
    """
    co2 = co2_flow * d_ts / 1000
    h2o = h2o_flow * d_ts / 1000
    soot = soot_flow * d_ts / 1000
    sox = sox_flow * d_ts / 1000
    nox = nox_flow * d_ts / 1000
    co = co_flow * d_ts / 1000
    hc = hc_flow * d_ts / 1000
    """
)

We can take a look at the final data with fuel flow and emissions columns.

df[["timestamp", "fuel", "co2", "h2o", "soot", "sox", "nox", "co", "hc"]].round(4)
timestamp fuel co2 h2o soot sox nox co hc
0 2018-01-02 19:53:00+00:00 84.5375 267.1385 103.9811 0.0025 0.1014 1.3049 0.0892 0.0026
1 2018-01-02 19:54:00+00:00 59.4300 187.7989 73.0989 0.0018 0.0713 0.7334 0.1397 0.0026
2 2018-01-02 19:55:00+00:00 54.0898 170.9238 66.5305 0.0016 0.0649 0.6335 0.1421 0.0026
3 2018-01-02 19:56:00+00:00 91.0999 287.8755 112.0528 0.0027 0.1093 1.5188 0.0434 0.0024
4 2018-01-02 19:57:00+00:00 88.7208 280.3577 109.1266 0.0027 0.1065 1.4676 0.0391 0.0024
... ... ... ... ... ... ... ... ... ...
111 2018-01-02 21:44:00+00:00 6.7503 21.3311 8.3029 0.0002 0.0081 0.0284 0.2678 0.0160
112 2018-01-02 21:45:00+00:00 5.5660 17.5885 6.8462 0.0002 0.0067 0.0236 0.2156 0.0129
113 2018-01-02 21:46:00+00:00 5.1859 16.3875 6.3787 0.0002 0.0062 0.0221 0.1962 0.0117
114 2018-01-02 21:47:00+00:00 3.2038 10.1240 3.9407 0.0001 0.0038 0.0137 0.1187 0.0071
115 2018-01-02 21:48:00+00:00 8.4690 26.7619 10.4168 0.0003 0.0102 0.0364 0.3089 0.0185

116 rows × 9 columns

Finally, we can obtain the total fuel consumption and emissions for the entire flight (unit in kg).

df[["fuel", "co2", "h2o", "soot", "sox", "nox", "co", "hc"]].sum().round(2)
fuel     3841.92
co2     12140.48
h2o      4725.57
soot        0.12
sox         4.61
nox        39.18
co         17.28
hc          0.43
dtype: float64

6.4 QAR data comparison

The following code snippet shows how to compare the fuel flow estimation from OpenAP with the QAR data. This QAR data is an example flight from traffic library.

fuelflow = openap.FuelFlow(ac="A320")

# Load the data
df = pd.read_csv("data/flight_a320_qar.csv", parse_dates=["timestamp"])

ff_estimate = fuelflow.enroute(
    mass=df.weight, tas=df.TAS, alt=df.altitude, vs=df.vertical_rate
)

diff = abs(ff_estimate.sum() - df.fuelflow.sum()) / df.fuelflow.sum() * 100

plt.figure(figsize=(7, 3))
plt.plot(df.timestamp, df.fuelflow, lw=1, label="QAR")
plt.plot(df.timestamp, ff_estimate, lw=1, label="OpenAP")
plt.ylabel("fuel flow (kg/s)")
plt.legend()
plt.show()

The difference between the estimated fuel flow and the QAR data is 4.29%.